
 1

JavaPOS Windows Driver for Mettler

Toledo Checkout Scales

User Manual

Mettler-Toledo Retail Group

Last Revision: 3/29/2019

This document was created by Mettler-Toledo Worthington Retail Group.

©2019 Mettler-Toledo

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, for any purpose without written permission of

Mettler Toledo Inc

 2

1.0 Introduction .. 3
2.0 System Requirements... 3

3.0 JavaPOS Scale Device Configuration .. 4
4.0 How to Send non-JavaPOS Commands to a Scale .. 7
5.0 Generate Checksum over the Scale Driver Jar File ... 9
6.0 Test Application ... 10

6.1 Test Application Guide ... 10

6.2 8217 Image.. 12
6.3 Dialog-06 Image ... 13
6.4 Dialog-06-PIPE Image .. 14

 3

1.0 Introduction

This JavaPOS Windows driver implements the Device Service component according to

the JavaPOS architecture and standard specifications.

A separate Mettler Toledo JavaPOS driver exists for Linux (30541335).

This Device Service implementation is intended to work with Mettler Toledo Ariva

Checkout scales (Ariva-S, Ariva-B and Ariva-H).

Two RS-232 protocols are supported: Dialog-06 and 8217.

 Dialog-06 and Dialog-06-PIPE protocols are primarily for the European market.

o The MettlerScaleDialog-06-PIPE protocol uses named pipes to display

weights directly on a POS screen, using the Mettler Toledo Virtual

Checkout Displays (VCODisp) technology.

 The 8217 protocol is used for both the N. America and European markets.

The POS may use USB Virtual COM Ports to transport the RS-232 protocol. Ariva scales

also provide a Virtual COM Port driver, upon request. In this case the Ariva scale must

be configured for Virtual COM Ports (menu 3.1 = 1).

This release of JavaPOS Device Service implementation is JavaPOS version 1.8

compliant.

2.0 System Requirements

On a 32-bit Windows system, you should install:

1. The 32-bit version of Java, and

2. The 32 bit JPOS executable.

On a 64-bit Windows system:

1. If only the 32-bit version of Java is installed on your system:

a. Then you must install the 32-bit version of the JPOS software.

b. Your JAVA_HOME must point to the 32-bit Java.

2. If only the 64-bit version of Java is installed on your system:

a. Then you must install the x64 version of the JPOS software.

b. Your JAVA_HOME must point to the 64-bit Java.

3. If both the 32 and 64-bit versions of Java are installed on your system:

a. Then you must install the x64 version of the JPOS software.

b. NOTE: Your JAVA_HOME must point to the 64-bit Java!

To determine if your Windows OS is 32 or 64 bits:

 4

- Go to Start->Control Panel\System and Security\System

To determine if your Java is 32 or 64 bits:

- Go to Start->Control Panel->Programs->Java

- Select the Java tab.

- Select View

- If the Architecture tab says "x86" then it is a 32 bit Java installation.

Verify that your Java is enabled.

- Go to Start->Control Panel->Programs->Java (32-bit).

o In the Java Control Panel, select "Java"

o Select "View"

o Verify that Java is "Enabled" (checked).

See the JPOS Installation Instructions on the setting of the JAVA_HOME and PATH

System Variables. It is critical that these variables are properly set.

3.0 JavaPOS Scale Device Configuration

The “jpos.xml” configuration file contains JposEntries configuration information for

each device managed through JavaPOS drivers.

Note that the property names used inside JposEntry are case sensitive.

jpos.xml contains three entries: MAKE SURE YOU EDIT THE CORRECT ENTRY!

 The “logicalName” attribute is the identifier of the JposEntry and therefore must be

unique at level of jpos.xml'. Its value must be used by the high-level application

when opening the JavaPOS scale device.

 The “factoryClass” attribute indicates the fully-qualified name of the class

responsible for the creation of the instance of the JavaPOS Device Service for Mettler

Scale supported models.

 The “serviceClass” attribute indicates the fully-qualified name of the class used by

the JavaPOS Device Service implementation for the target scale model. For Mettler

Scale L2-SCx models the Device Service is implemented by

“com.mt.jpos.MettlerL2SCScaleService” class.

 The “Vendor name” and “url” attributes can be set to appropriate Mettler values.

 The “category” MUST have “Scale” value and the “version” attribute should reflect

the JavaPOS version used ("1.8").

 5

 The “product description” property can be set to a desired string that will be returned

as JavaPOS Device Description when an application requests it.

 The “physicalDeviceDescription” and “physicalDeviceName” properties can be set

to desired string values that will be returned as JavaPOS PhysicalDeviceDescription

and PhysicalDeviceName when an application requests them.

 The “deviceServiceChecksum” property is mandatory and indicates the checksum

calculated over the ‘.jar’ archive that contains the drivers' implementation

(mtscale.jar).

o This checksum value represents the CRC32 checksum calculated over the

‘MessageDigest’ hash-content in the ‘.jar’ archive.

o When the ‘open’ method is invoked for a scale device, the checksum over the

custom implementation part of the driver (that is, the Device Service

component in the ‘.jar’ archive) is computed at runtime. This obtained value

is compared to the jpos.xml property value. If they are different then an error

is raised for the ‘open’ operation and the Device Service component is not

opened.

o If this property is missing or has no value then the ‘open’ operation fails and

an error is raised.

The proper checksum value to use for this property is delivered together to each

new release of the ‘.jar’ archive (mtscale.jar).

 The “port” property value indicates the serial port the scale is connected on:

 on Windows “COM1”, “COM2” and so on;

 on Linux “/dev/ttyS0”, “/dev/ttyS1” and so on.

This property is mandatory only if “communicationType” is set to “COM”

Note: for the following values (baud rate, parity, stop bits and data bits), the following

values are typically standard for Mettler Toledo scales:

1.) For the US and Canada scales are typically configured for 9600 baud, 7 data

bits, Even parity and 1 stop bit, but this depends upon the POS system's

configuration.

2.) For Europe the Ariva scales are typically configured for 9600 baud, 7 data bits,

Odd parity and 1 stop bit, but this depends upon the POS system's configuration.

The scale RS-232 settings must match these settings. The Ariva RS-232 settings can be

configured via the Ariva display menu.

 The “baudrate” property’s value indicates the communication speed appropriate for

the scale. If this property is missing or invalid then the default value 9600 is used.

 6

 The “parity” property’s value indicates the parity for serial communication with the

scale connected on the indicated serial port. If this property is missing or invalid then

the default value 1 (meaning ‘ODD’) is used.

o Parity: 1 is for Odd Parity, 2 is for Even Parity, 0 is for No Parity.

 The “stopbits” property’s value indicates the number of stop bits for serial

communication with the scale connected on the indicated serial port. If this property

is missing or invalid then the default value 1 is used.

 The “databits” property’s value indicates the number of bits for data content during

serial communication with the scale connected on the indicated serial port. If this

property is missing or invalid then the default value 7 is used.

 The “metricUnit” property indicates through its “true”/”false” values whether the

scale reports weight values in Kilogram (metric unit) or in Pound (English unit).

o If set to “false” the MeasuredWeight field will display in Lbs. or Oz.

 This is typically true for the US.

o If set to “true” the MeasuredWeight field will display the weight in grams.

 This is typically true for the EU.

 The “maximumWeight” property indicates the maximum weight value for that scale.

The value is expressed as integer number, which has an assumed decimal place

located after the "thousands” digit position. Here are the values:

o 0-15 lbs.: 15000

o 0-6/6-15 lbs.: 15000

o 240 Oz. 240000

o 0-3/3-6 kg: 6000

o 0-15 kg: 15000

o 0-6/6-15kg: 15000

o 0-30 lbs. 30000

o 0-15/15-30 lbs. 30000

 The “tracing” property indicates through its “true” / “false” values whether the

tracing mechanism is turned On or Off.

 The “tracingOutputFile” property indicates the file where to write the trace-

messages. The file can be indicated using absolute or relative paths. If the path does

not exist or the file cannot be created at that location (because insufficient access

rights) then the tracing mechanism is turned Off.

 The “tracingLevel” property indicates the tracing level. This property can take two

possible values “INFO” and “DEBUG”. INFO is default tracing level. DEBUG is for

tracing extra information. This property is optional.

 7

 The “refreshSerialConnection” property indicates the time interval for forced refresh

of serial communication, measured in minutes. This property accepts numeric values.

This property is optional. If not present, serial communication will not be refreshed.

The following values are only for Dialog-06 pipe communications:

 The “communicationType” property indicates the communication type desired. This

property can take two possible values “COM” for serial communications and “PIPE”,

for pipe communication. This property is mandatory for Dialog-06.

 The “pipeInputFile” and ‘pipeOutputFile” properties indicate the names (including

path if needed) of the named pipes to use. If these names contain a path then these

values are system-dependent:

 on Windows “..\\pipe\\VCODispIn”, “VCODispIn” and so on;

 on Linux “../pipe/VCODispIn”, “VCODispIn” and so on.

These properties are mandatory for pipe communication (“communicationType”

property is set to “PIPE”).

4.0 How to Send non-JavaPOS Commands to a Scale

The Mettler Ariva Scale Dialog-06 protocol offers commands that are not included in the

JavaPOS standard. These commands can be sent to the scale logical device through the

“directIO” call:

void directIO(int commandCode, int[] data, Object auxiliarData)

In the Mettler Scale JavaPOS driver implementation, the directIO call can be used for the

following special commands:

 Request an item weight by providing the item description:

- commandCode = MettlerScaleDirectIOCommands. GET_WEIGHT

- data = int[1] and acts as input-output parameter:

 On input data[0] provides the timeout value in milliseconds to wait for

a weight result from the scale.

 In synchronous mode (AsyncMode = false) the weighing result is

returned in data[0];

- auxiliarData – the String representing the item description to be displayed

(maximum 13 characters.)

- The unit price and the tare weight, if available, must be set before calling this

directIO method.

Code sample:

 8

// myScale instance is previously open, claimed and enabled

int[] data = new int[1];
String itemDescription= “Apples”;

data[0] = 2000; // 2 seconds

try {
 myScale.setAsyncMode(false);
 myScale.setUnitPrice(14500);// meaning 1.4500
 myScale.setTareWeight(300); //meaning 0.300

myScale.directIO(MettlerScaleDirectIOCommands.GET_WEIGHT, data,
 itemDescription);

 int weight = data[0];
 System.out.println(“Measured weight = “ + weight);
 System.out.println(“Sales Price = “ + myScale.getSalesPrice());

} catch (JposException jposEx) {
 //Exception handling
}

If the operation is asynchronous (AsyncMode = true) then the weighing result is returned

through the DataEvent event and the calculated sales price is returned via the JavaPOS

scale instance’s SalesPrice attribute.

 Display the protocol’s version number (version number On):

- commandCode=MettlerScaleDirectIOCommands.DISPLAY_PROTOCOL_VERSION

- data = null (not used)

- auxiliarData = null (not used)

According to the Dialogue06 protocol, after receiving the command to display the

protocol version number the scale will ignore further commands until it receives the

command to stop displaying the protocol version number (version number Off).

Therefore the application should also send the following command to put the scale back

into its operational state:

 Stop displaying the protocol’s version number (version number Off):

- commandCode = MettlerScaleDirectIOCommands. CLEAR_PROTOCOL_VERSION

- data = null (not used)

- auxiliarData = null (not used).

 9

5.0 Generate Checksum over the Scale Driver Jar File

Users: Note that the proper checksum value to use for this property is delivered with

each new release of the mtscale.jar archive, so this operation is typically only used by the

software developers who created this .jar file.

When a new JavaPOS Jar archive is released, a new checksum value must be generated to

use as the value for the "deviceServiceChecksum" property in the entry for Mettler scale

device in jpos.xml configuration file.

The mtchecksumutil.jar tool is used to generate a checksum over a Jar file.

 Run this mtchecksumutil.jar from a command-line from the directory where the jar is

located, using either:

java –cp $CLASSPATH:./mtchecksumutil.jar com.mt.intern.util.CRC32CalcApp

or:

java –jar mtchecksumutil.jar

The utility-application’s GUI looks like:

Use “Open file” button to browse and locate the target mtscale.jar file. It assumes by

default the directory where mtchecksumutil.jar is located.

Once the target jar file is located and selected, press the “Calculate CRC” button and the

checksum calculated over the selected jar file will be displayed on the GUI and written

into a text file named ‘mtscale_crc.txt’ in the same directory where mtchecksumutil.jar is

located.

This checksum value must be used in the jpos.xml file for the “deviceServiceChecksum”

property for the jpos-entry corresponding to Mettler scale device being managed by

JavaPOS.

 10

6.0 Test Application

This Mettler Toledo JavaPOS driver implementation includes a Java test application GUI

contained in ‘mtscaletestapp.jar’.

To run on a Linux platform, this application must be launched from an X-Window

session.

Assuming you are in the directory where mtscaletestapp.jar is located, the application

can be started from the command prompt: startMTScaleTestApptest.bat

The application GUI for 8217, Dialog-06 and Dialog-06-PIPE are at the end of this

section.

6.1 Test Application Guide

Errors are reported in the ‘Reported errors’ text area.

1 Open scale

The first operation is to open the JavaPOS Scale logical device. If the open operation

succeeds the scale’s principal characteristics are displayed into the ‘Scale properties’

panel.

After the ‘Open’ operation, the user can either ‘Claim’ or ‘Close’ the Scale logical

device.

2 Claim scale

This operation opens the serial port connection and enables the scale's logical device.

After this operation it is possible to start weighing operations, to ‘Release’ the scale or to

‘Close’ the scale.

3 Weighing operations

3.1 Get Weight

After the scale is claimed one can send the "Get Weight" command to the scale.

- When the ‘Get weight’ button is pressed the command is sent to the physical scale

and the weighing result is displayed in the ‘Measured weight’ field.

3.2 Tare

This application support both Platter Tare (Tare Compensation) and Preset Tare, as well

as the ability to Clear Tare.

- A Preset Tare weight can be entered into the Preset Tare Weight Field.

 11

- A Platter Tare weight can also be placed onto the scale and registered by pressing

the Tare Compensation button.

3.3 Zero Scale

This command zeros the scale.

3.4 Dialog-06

- The ‘Unit price’ is mandatory when using Dialog-06 and, when provided, the

calculated ‘Sales price’ is displayed.

- The Item Description may also be provided.

3.5 Dialog-06-Pipe

- The Dialog-06-Pipe Zero Scale command is provided to work with the Virtual

Checkout Display (VCODisp).

3.6 Other

Note that the Timeout, Asynchronous Operations and Confidence Test commands may

not be particularly useful with the Ariva scale. The use of these commands is left as an

exercise for the reader.

4 Release scale

During this operation the connection to the serial port is closed and the scale instance is

signaled as released.

After this operation one may ‘Claim’ again the scale or ‘Close’ it.

5 Close scale

During this operation the scale instance is closed.

6 Exit

Exit the application.

 12

6.2 8217 Image

 13

6.3 Dialog-06 Image

 14

6.4 Dialog-06-PIPE Image

